A STUDY OF THE REACTION OF BICYCLO[5.1.0]OCTA-2,5-DIENE WITH SULPHUR DIOXIDE By John Dalling, James H. Gall, and David D. MacNicol^{*} (Department of Chemistry, University of Glasgow, Glasgow, Gl2 8QQ)

SUMMARY

Scheme.

□ Thermally-induced reaction between bicyclo[5.1.0]octa-2,5-diene (I) and sulphur dioxide under dry conditions in toluene-d₈ as solvent leads to the unexpected formation of the hitherto unknown diene sulphone 7-thiabicyclo[4.2.1]nona-2,4-diene 7,7-dioxide (II).□

Recently we have described¹ the direct bridging of bicyclo[5.1.0]octa-2,5-diene (I) by elemental sulphur or selenium to produce the corresponding 9-heterobicyclo[3.3.1]nona-2,6-dienes. We now report the novel course of thermal reaction between (I) and SO₂. Reaction runs were

typically carried out in thick-walled n.m.r. tubes, employing toluene-d₈ as solvent so that reaction progress could be conveniently monitored. Heating pure hydrocarbon (I)¹ with excess dry² sulphur dioxide for 5 days at 150°C, led to the disappearance of starting material and production of a new sulphone (II). Compound (II) was purified chromatographically (Mallinckrodt silicic acid, 20% ethyl acetate/<u>n</u>-pentane as eluent) and recrystallisation from benzene/ CS_2 gave a moderate yield of (II) as colourless crystals, m.p. 60.5-61.5°C: i.r. 1300, 1160, and 1110 cm⁻¹ v(SO₂); λ_{max}^{EtOH} 259 mµ (ε = 4900); <u>m/e</u> 170.04026 ($C_8H_{10}O_2S$ requires 170.04015); ¹³c n.m.r. (δ_c in CS_2/C_6D_6 , <u>ca</u>. 10:1 v./v.) 26.9 (t), 33.0 (d), 61.1 (d), 62.2 (t), 124.1 (d), 126.5 (d), 128.7 (d), and 137.8 (d). Definitive information was obtained from 360 MHz ¹H n.m.r. spectra, ³ δ : 2.91, H₁; 6.12, H₂; 5.82, H₃; 6.03, H₄; 5.74, H₅; 3.72, H₆; 3.07, H_{8A}; 2.72, H_{8B}; 1.81, H_{9A}; H₄

2.56, H_{9B}; the geminal and vicinal coupling constants⁴ are: J_{8A8B}, -13.₁; J_{9A9B}, -13.₄; J₁₂, 8.₁; J₂₃, 11.₀; J₃₄, 7.₄; J₄₅, 11.₆; J₅₆, 7.₆; J_{69A}, 1.₀; J_{69B}, 5.₇; J_{18A}, 9.₇; J_{18B}, 3.₀; J_{19A}, 1.₀; J_{19B}, 6.₄; the long range couplings also being in complete accord with assigned structure (II). The mechanism of formation of (II) is of interest.

A possible mechanism is shown in the

After possible initial complex information⁵ between (I) and SO_2 , direct cyclopropane ring opening⁶ gives (III) which proceeds, via (IV) and (V), to (II). Acknowledgement.

We thank the S.R.C. for support and Dr. I.H. Sadler for the 360 $\,MH_Z$ proton spectra.

References and Notes

1. E. Cuthbertson, J.H. Gall, and D.D. MacNicol, <u>Tetrahedron Letters</u>, 1977, 3203. 2. V/v ratios of toluene-d₈: SO₂ of <u>ca</u>. 10:1 were employed. The SO₂ was dried (3A molecular sieves) and all solutions were carefully, degassed. In preliminary runs from which moisture was not rigorously excluded, product signals from the known sulphone 9-thiabicyclo[4.2.1]nona-2,7-diene 9,9-dioxide were observed, this compound being independently synthesised by the method of W.L. Mock and J.H. McCausland, <u>J. Org. Chem.</u>, 1976, <u>41</u>, 242, for ¹H n.m.r. comparison 3. Measured in CS_2/C_6D_6 (<u>ca</u>. 10:1 v/v). The assignments given have been confirmed by extensive spin decoupling experiments.

4. Based on first order analysis: a detailed computer analysis is in hand.

Cf. M.M. Rogic and D. Masilamani, J. Amer. Chem. Soc., 1977, 99, 5219; and refs. therein.
Alternatively, prior attack of SO₂ at a double bond (cf. ref.5) may occur giving two

carbonium species each capable of possible conversion

to (VI): appropriate nucleophilic attack of the

sulphur lone pair in a cyclopropane ringprotonated species may then give (II).

(VI)

(Received in UK 2 October 1979)